
Applications of the Levenberg-Marquardt

Algorithm to the Inverse Problem

Mark Bun

October 19, 2009

Abstract

This paper continues the exploration of numerical recovery algorithms
that George Tucker, Sam Whittle and Ting-You Wang presented in [4].
We investigate several implementations and applications of the Levenberg-
Marquardt nonlinear least-squares optimization algorithm, studying its
effectiveness on various electrical networks.

Contents

1 Introduction 2
1.1 Notation . 3

2 Implementation Notes 3

3 Levenberg-Marquardt 4
3.1 Introduction . 4
3.2 Reimplementation . 6
3.3 Linear Systems . 7
3.4 Computing the Jacobian . 8
3.5 Results . 9
3.6 Condition Number of the Damped Hessian Approximant 10

4 Regularization 11
4.1 Augmented Lagrangian Method 12
4.2 Numerical Differentiation . 16

5 Convexity 17
5.1 Sufficient conditions . 18
5.2 A Counterexample . 18

6 Closing Remarks 20
6.1 Acknowledgements . 21

1

1 Introduction

Let G = (V,E) be a connected graph with boundary, and let γ : E → R+ be a
conductivity function on E. We take Γ(G, γ) to be an electrical network. We
begin with some standard definitions, and refer the reader to [1] and [4] for
further discussion:

Definition 1.1 (Kirchhoff Matrix). Suppose the vertex set V is partitioned
as V = {v0, v1, . . . , vm, vm+1, . . . vm+l} where {v0, . . . , vm} are boundary nodes
and {vm+1, . . . vm+l} are interior nodes. Then the Kirchhoff matrix K is the
(m+ l)× (m+ l) matrix with entries given by:

Kij =

 −γij if i 6= j and there is an edge between vi and vj∑
k γik if i = j

0 otherwise.

We note that by our partitioning of V , we can naturally express the Kirchhoff
matrix in block form as

K =
(
A B
BT C

)
,

where A represents boundary-to-boundary connections, B and BT represent
interior-to-boundary connections and C represents interior-interior connections.

Definition 1.2 (Response Matrix). The response matrix Λ is the m×m map
taking boundary voltages to boundary currents, and is expressed as the Schur
complement of C in K (i.e. K\C):

Λ = A−BC−1BT .

Note that the response matrix is also a Kirchhoff matrix (for a different electrical
network).

Suppose we are given a graph G and a response matrix Λ0. The inverse
problem is to use this information to recover the conductivity function γ.

Let (e0, e1, . . . , en−1) be a consistent ordering of the edge set E. We diverge
from the notation in [4] by letting x = (γ0, γ1, . . . , γn−1) ∈ Rn, recasting the
recovery problem into an optimization problem over Rn. We define the following
functions:

F(x) = vec(Λ(x)− Λ0) ∈ Rm
2
,

f(x) =
1
2
|F(x)|2.

Here, Λ(x) is the response matrix computed using the components of x as con-
ductivities. We note that x is a solution to the inverse problem if and only if

2

f(x) = 0. Since f ≥ 0, a solution will be a global minimizer for f . There-
fore, assuming Λ0 is a valid response matrix, we can reformulate the electrical
conductivity inverse problem as

arg min
x∈R+

n
f(x). (1)

That is, we want to find {x : f(x) is minimized}. If the inverse problem is well
posed, we will have a unique solution. In this paper, we explore various iterative
methods for solving (1) and similar formulations.

1.1 Notation

We denote the gradient of a scalar-valued function f(x) by ∇f(x) and the
Hessian by Hf (x). The Jacobian (matrix) of a vector-valued function F(x) will
be denoted by JF(x). We note that Hf = J∇f . If it is convenient and clear
from context, we may drop the subscripts of Jacobians and Hessians.

To minimize confusion, I will do my best to display scalars and matrices in
regular typeset, and vectors in bold.

2 Implementation Notes

Whereas the computations in [4] were run primarily in C and Matlab, all of the
algorithms in this paper were implemented and tested in Sage 4.0.2. There were
several reasons for this choice:

• Inputting and manipulating graphs and matrices is extremely straightfor-
ward.

• Python (the programming language Sage is based on) is almost as intu-
itive to read and write as pseudocode, which I hope will inspire further
examination and enhancement of my code.

• Sage is very quick with symbolic manipulations.

• Sage allows easy access to functions in Python libraries like NumPy and
SciPy.

• It’s free, so I can use it on my laptop.

However, the Sage implementation results in some limitations as well. For
instance, since Python is interpreted, the speed at which we can make compu-
tations is severely restricted.

All of the computations in this paper were done using double-precision float-
ing point numbers.

Definition 2.1 (Machine epsilon). Machine epsilon is the difference between 1
and the smallest representable floating point number greater than 1.

3

Double precision numbers have 53 bits of mantissa, so we would expect
Sage’s machine epsilon to be 2−52. The value of machine epsilon I computed
was 2.22044604925031e-16, as anticipated, and I used this as ε in most of my
calculations.

3 Levenberg-Marquardt

The Levenberg-Marquardt method is an iterative algorithm for solving nonlinear
least squares problems. The algorithm is similar to the several variable Newton’s
method, which the reader is probably familiar with. Instead of directly finding
an x such that f(x) = 0, we attempt to find a local minimum of f , which is
necessarily a stationary point. That is, we want to find x such that ∇f(x) = 0.

3.1 Introduction

The best way to understand how Levenberg-Marquardt works is to first look
at the methods of gradient descent and Gauss-Newton iteration. The idea of
the former method is to start with an initial guess and descend in the opposite
direction of ∇f until ∇f = 0. We present the algorithm in [4] here. Further
discussion and several excellent convergence theorems for all of these methods
can be found in [3].

Algorithm 1 Gradient (Steepest) Descent
initialize x ∈ Rn
initialize α ∈ R {step size}
initialize ε
while iterations < maxIterations do

x = x− α∇f(x)
if f(x) < ε then

return x
end if

end while
return x

The authors of [4] took the step size α to be constant, but more refined algo-
rithms often perform a line search to determine a suitable choice for α at each
iteration.

Although gradient descent is attractive for its simplicity and serves as a good
starting point for optimization algorithms, convergence near solutions tends to
be very slow. We can do better if we have some information about the second
derivatives of f . This is where Newton’s method comes in.

4

Algorithm 2 Newton’s Method
initialize x ∈ Rn
initialize α ∈ R {step size}
initialize ε
while iterations < maxIterations do

solve for d in Hf (x)d = −∇f(x)
x = x + αd
if f(x) < ε then

return x
end if

end while
return x

Newton’s method is extremely powerful not only because it gives global con-
vergence for convex functions, but because the speed of convergence is quadratic.
The downside is that computing the Hessian of f is impractically time-consuming.
To get around this, we make the following observations (given in [4]) about the
functions we defined in the introduction:

∇f = JTF F.

Hf = JTJ +
∑
i

FiHFi
.

We note that in our least squares problem, we have Fi → 0 near a solution,
so we can use JTJ as a first-order approximation to the Hessian. Replacing Hf

in Newton’s method with JTJ gives rise to the Gauss-Newton method.

The Levenberg-Marquardt algorithm can be seen as an interpolation between
gradient descent and Gauss-Newton. It augments the Hessian approximant in
Gauss-Newton with a diagonal damping term, resulting in a descent equation
that looks like

(JTJ + µdiag[v1, v2, · · · , vn])d = −∇f = −JTF.

For µ = 0, this is exactly the Gauss-Newton method. If we take the diagonal
matrix to be the identity matrix In, then for µ >> 0, we have d → −∇f/µ
which is the steepest descent direction. We observe that Levenberg-Marquardt
is more robust than Gauss-Newton because a sufficiently large value of µ ensures
that the matrix on the left-hand side is positive definite. That said, we want to
avoid taking µ to be unnecessarily large, lest we experience the inefficiency of
gradient descent. Thus in our algorithm, we want to adjust µ at each iteration
to take advantage of gradient descent when we are far from a solution, but then
apply what is essentially Gauss-Newton to pinpoint it exactly.

What follows is the implementation presented in [4].

5

Algorithm 3 George, Sam and Ting’s Levenberg-Marquardt Method
initialize x ∈ Rn
initialize µ ∈ R {damping parameter}
while iterations < maxIterations do

solve for d in (JTJ + µIn)d = −JTF
if f(x + d) < f(x) then

x = x + d
decrease µ
iterations++

else
increase µ

end if
end while
return x

3.2 Reimplementation

I made a few changes in my reimplementation of their algorithm, which I will
explain in notes to follow.

1. At line 8, I replaced the identity matrix In with the diagonal of our Hessian
approximant. For systems where the diagonal entries of H vary signifi-
cantly, this allows us to get away with using smaller values of µ and still
have a positive definite matrix.

2. At line 9, I allowed the program to terminate early when f became suffi-
ciently small. This is practical in scientific calculations since we only need
computational precision to be commensurate with measurement precision.

3. One of the challenges in [4] was to efficiently handle µ. Recall that we
want to use relatively large values of µ when we are far from a solution,
and then decrease it signficantly when we are near one. I decided that an
easy way to do this was to simply set µ to the value of f at each iteration,
so µ→ 0 as we approach the solution, but increases if we stray from it.

4. At line 15, instead of immediately incrementing µ, I chose to do a very
crude line search to continue with the descent direction the algorithm
found. This avoids making µ unnecessarily large.

5. At line 23, the algorithm checks each component of x and bounces val-
ues that are too small or too large into a region of feasible conductivities.
The authors of [4] noted that conductivities sometimes attained negative
values, but had little effect on the convergence of their algorithm. Unfor-
tunately, my implementation generated problems. The components of F
are rational functions, and often have terms look like

1∑
i xi

.

6

Algorithm 4 My Levenberg-Marquardt Method
initialize x ∈ Rn
initialize µ ∈ R {damping parameter}
initialize ε > 0 {tolerance}
initialize δ > 0 {search tolerance}

5: initialize τ >> 0 {upper bound}
while iterations < maxIterations do
H = JTJ
solve for d in (H + µ diag H)d = −JTF
if f(x + d) < ε then

10: return x
else if f(x + d) < f(x) then

x = x + d
µ = f(x)
iterations++

15: else
initialize α > 0 {step size}
while α > δ do
α/ = 2
test f(x + αd) as above

20: end while
µ = f(x + αd)

end if
for i ∈ (0, · · · , n− 1) do

if xi < ε then
25: xi =

√
ε

end if
xi = min{xi, τ}

end for
end while

30: return x

If the values of xi vary in sign or are all very small, the algorithm ex-
periences stability issues and possible zero division. To combat this, my
algorithm ensures that the conductivites have some positive lower bound
at each iteration, and are also kept from heading to infinity.

3.3 Linear Systems

The single-line expression for Λ involves taking the inverse of a principal sub-
matrix of the Kirchhoff matrix:

Λ = A−BC−1BT .

However, in computing X = C−1BT , it is much easier to solve the linear system

7

CX = BT .

The built-in Sage algorithm solves such a system through standard Gaussian
elimination. The authors of [4] recommend taking advantage of the positive def-
initeness of C by using its Cholesky decomposition to more efficiently solve this
system. In practice, it turns out that Sage’s built-in decomposition algorithm
is unstable for large networks. Instead, I attempted to speed up the solution of
this linear system by using the Gauss-Seidel iterative algorithm for each column
of BT .

Algorithm 5 Gauss-Seidel
initialize x ∈ Rn
initialize ε > 0
while |Ax− b| > ε do

for i ∈ (0, . . . , n− 1) do
σ = 0
for j ∈ (0, . . . , i− 1, i+ 1, . . . , n− 1) do
σ+ = Aijxj

end for
xi = (bi − σ)/aii

end for
end while
return x

Since C is positive definite, the Gauss-Seidel algorithm converges to the solution
of the linear system. Unfortunately, it turned out that my implementation of
the algorithm was incredibly slow, making it impossible to recover even 3 × 3
lattices. The final version of Levenberg-Marquardt still employs Sage’s Gaussian
elimination routine, though I would very much like to see the application of a
stable Cholesky decomposition (or even LU-decomposition).

3.4 Computing the Jacobian

The authors of [4] provide the neat speed-up

∂iΛ(x) = DT∂iK(x)D, D =
(

Im
−C−1BT

)
.

We note that vec ∂iΛ(x) gives the ith column of JF. Differentiating the
Kirchhoff matrix is incredibly simple, as each component of x appears in it
exactly 4 times:

8

K =

. . .
xi +

∑
. . . −xi

...
. . .

...
−xi . . . xi +

∑
. . .

,

so the derivative is given by

∂iK =

. . .
1 . . . −1
...

. . .
...

−1 . . . 1
. . .

.

3.5 Results

I ran the algorithm on n×n square lattice networks with constant conductivity
1 and an initial guess of all 2s (As George, Sam and Ting did). It’s fairly obvious
that this method does not scale very well.

n iterations CPU time (s)
1 4 0.06
2 5 0.41
3 6 1.81
4 8 7.64
5 8 23.52
6 12 90.05
7 10 143.21
8 16 472.31
9 26 1657.82
10 29 2886.30

The algorithm works well on a wide variety of graphs. An interesting case
to look at is a two-to-one electrical network with response matrix

7 −3 −1 −1 −1 −1
−3 7 −1 −1 −1 −1
−1 −1 6 −2 −1 −1
−1 −1 −2 6 −1 −1
−1 −1 −1 −1 6 −2
−1 −1 −1 −1 −2 6

 .

With an initial guess of all .01, the algorithm converged to the following solution:

9

Whereas an initial guess of all 1’s gave the solution

3.6 Condition Number of the Damped Hessian Approxi-
mant

Below is a table with the condition number of (H +µ diag H) at each iteration
(as well as after each adjustment of µ), computed on an 8 × 8 lattice.

10

iterations Condition number
1 37957.6551305
2 3.89679085225e+18
3 3.91087691539e+25
4 2.14935271079e+25
5 8.21004143849e+21
6 9.68127027747e+21
7 1.15863105438e+22
8 4.09919757851e+20
9 7.9414851257e+21
10 6.81069566976e+21
11 8.87062188588e+20
12 1.18654876563e+21
13 9.86841420403e+20
14 1726675233.96
15 69830744.9929
16 78793765.0769
17 297092440.155
18 263394054.973
19 275440186.735
20 275823371.428

I currently have no explanation for why these numbers are phenomenally
large, but they suggest that it might be prudent to perform a decomposition on
the Hessian approximant in order to improve the stability of the algorithm.

4 Regularization

Suppose we are electrical engineers and want to recover electrical conductivities
in a physical network. We can construct a network response matrix by putting
voltages at various boundary nodes and measuring the resulting currents. But
there’s a problem. Unless our instruments and the test conditions are perfect,
the result isn’t really a response matrix (as it is mathematically defined) and
the techniques we have established probably won’t work. However, if we know
something about the network, it may still be possible to “solve” the “inverse
problem”.

In [4], the authors introduce the idea of using a regularization term to handle
noisy data. Suppose we know that the distribution of conductivites in our
network is relatively smooth or piecewise constant. Then instead of minimizing
just the functional, we can obtain more accurate results by also minimizing an
aggregation of the jumps between conductivites.

In the continuous case, there are two commonly used regularizers:

11

∫
Ω

|∇u|2, (2)

||∇u||TV ∼
∫

Ω

|∇u|. (3)

Regularizer (2) is generally appropriate for smooth distributions, whereas
(3) is more appropriate for piecewise constant functions, or in our case, clumps
of resistors. It is often easier to deal with expression (2) since we can apply
least-squares methods naturally. The discretizations we will use, respectively,
are

S(γ) =
∑

i∈intG

∑
j∼i,k∼i

(γij − γik)2,

C(γ) =
∑

i∈intG

∑
j∼i,k∼i

|γij − γik|.

To be consistent with prior notation, we will henceforth refer to these as S(x)
and C(x). When working with regularizers, the authors of [4] used a Lagrangian
approach, minimizing the function

L(x) = f(x) + βS(x).

As one would expect, they found that their choice of β had a considerable impact
on their results. They further noted that obtaining a handle on the measurement
error in Λ0 could lead to a suitable choice for β. This is the motivation for the
following algorithm.

4.1 Augmented Lagrangian Method

Construct the response matrix for a physical system as follows: for i 6= j, apply
unit voltage at boundary node i, measure the resulting current at boundary
node j, and insert this value in the ij position of Λ0. In each diagonal position
ii, take the negative average of the sum of entries in row i and the sum of entries
in column i.

Suppose our measurement error for each entry of the response matrix has a
Gaussian distribution with zero mean and standard deviation σ, and suppose
our measurments are uncorrelated. We want to determine a reasonable upper
bound on our functional

f(x) =
1
2

m2−1∑
i=0

(Λ(x)i − Λ0,i)2

so that each entry of the generated response matrix Λ(x) and the corresponding
entry of the target response matrix (that is, the one without noise that we

12

don’t actually have access to) lie in some small ball around the corresponding
entry in the measured “response” matrix. Since about 95% of measurements
in a Gaussian distribution lie within 2 standard deviations of the mean, it is
probably reasonable to take

f(x) ≤ 1
2

m2−1∑
i=0

(2σ)2

= 2m2σ2.

Any x within this range gives a decent approximation to the solution of our
inverse problem (I invite the interested reader to experiment with different upper
bounds). We can use a regularization term to pick out the solution in this set
that is “best.” Suppose we have an appropriate regularizer R(x). Then we
can effectively approximate the solution of the inverse problem by solving the
constrained optimization problem

arg min
x∈R+

n
R(x)

s.t. f(x) ≤ 2m2σ2.

One way to solve this problem would be to minimize the standard Lagrangian
function as the authors of [4] did. Alternatively, Ernie Esser suggested using an
augmented Lagrangian approach, in which we add a quadratic penalty term to
the Lagrangian function, giving

P (x, λ, ζ) = R(x)+

{
λ(f(x)− 2m2σ2) + 1

2ζ(f(x)− 2m2σ2)2 iff(x)− 2m2σ2 > −λζ
− 1

2
λ2

ζ otherwise.

The penalty term measures the extent to which our constraint equation is vio-
lated (and along with the Lagrangian term, is conspicuously missing when the
constraint is satisfied), so minimizing it helps our solutions move quickly into
the desired range. Further, the algorithm I will present allows us to iteratively
determine suitable choices for λ and ζ, eliminating any guesswork related to
these parameters. Since we are only dealing with one constraint equation, the
algorithm is fairly simple; a good exposition of the general case is given in [3].

13

Algorithm 6 Augmented Lagrangian Method
initialize x ∈ Rn
initialize λ, ζ > 0
while iterations < maxIterations do

x̃ = approximation to argmin
x

P (x, λ, ζ) {Found using an early-terminating

application of Levenberg-Marquardt}
λ = max{λ+ ζ(f(x̃)− 2m2σ2), 0}
ζ = max{10ζ, iterations2} if |f(x̃)− 2m2σ2| > .25 · |f(x)− 2m2σ2|
x = x̃

end while
return x

Although somewhat slow due to our repeated use of Levenberg-Marqurdt,
this algorithm gave surprisingly favorable results. Whereas straight-up applica-
tion of Levenberg-Marquardt frequently gave conductivites that bounced out of
the acceptable region during intermediate calculations, this method generally
gives intermediate conductivities that tend very uniformly to the desired result.

It turned out that the differentiation algorithm we used to compute the Jacobian
(presented in the following section) gave ∇C(x) = 0 due to the fact that
Im |z| = 0 for all z ∈ C. Despite this blunder, many of the following results
were obtained faster, and in some cases, a “correct” differentiator failed to give
convergence at all (though when it did, the results were usually a bit more
accurate). In further work, we will explore ways of using C(x) without having
to differentiate functions that are not smooth everywhere.

Here, we tackle the problem presented in [4] of recovering a 5 × 5 network with
a clump of 100 Ω resistors in the center and 1 Ω resistors elsewhere. Using the
regularizer S(x) as they did, it was possible to recover the interface, but the
conductivities were considerably off. With a standard deviation σ = .005, I
obtained the conductivity list

(1.02231638805, 0.97058890618, 1.04732624153, 1.01159368132, 0.934163146072,
0.983610843515, 0.967278644389, 0.940665371582, 0.967375355672, 0.936811614118,
0.959573701358, 0.935639396694, 0.951669509006, 0.978159835805, 0.942684656395,
1.03402164492, 1.01401997016, 0.956812282243, 1.00031926378, 1.02573029112,
0.971410094332, 1.05382374743, 1.30571467939, 1.29922438046, 1.25546613045,
1.42498346171, 1.00397523083, 1.29174802461, 1.03363429116, 1.33203171672,
1.27760436899, 1.59324559451, 1.59962345322, 1.58214347977, 1.70009420544,
1.30205028038, 1.59064344086, 1.30202822119, 1.49614549778, 1.25776010968,
1.73541425222, 1.59611543196, 1.72291171701, 1.71445063989, 1.46020581007,
1.60861020226, 1.26043559279, 1.3507458121, 1.0853046252, 1.61410976144, 1.32564588718,
1.61652757442, 1.45977576446, 1.33141398438, 1.35043687146, 1.10962297145,
1.11749361746, 1.32410570672, 1.29394061023, 1.01852212477).

14

The regularizer C(x) turned out to be much more effective for standard devia-
tions. With σ = .000005, the algorithm gave

(1.00002215942, 1.00001653091, 0.999979967239, 1.00001969461, 1.000008175,
1.00005083333, 1.00000623973, 0.999964247814, 1.00023387487, 1.00028159564,
1.00018315127, 1.00012136971, 1.00001458215, 1.00000559845, 0.999999886387,
0.999941012494, 0.999983297131, 0.999967256332, 1.00003435096, 0.999955744984,
0.999897346255, 0.999968086124, 0.9992537917, 1.00035955531, 0.999109466841,
0.999336087694, 1.00001945543, 1.00052890657, 1.00002410158, 1.00043657391,
0.999694993924, 99.5442579525, 102.164699639, 102.528077772, 89.2977325985,
1.00005504994, 103.246733884, 0.999418612659, 0.999377194263, 0.999528608136,
103.005505828, 100.924886113, 100.429322545, 100.836907875, 0.999312927073,
101.97078432, 0.999305231948, 1.00036209349, 0.999935841256, 96.1423472662,
1.00044713496, 100.442032881, 0.999459741864, 1.00011652912, 1.000249821,
0.999792738877, 1.00017875663, 0.999873147073, 0.999799145305, 1.00012665371).

As the error grew, the algorithm deteriorated. For σ = .00005, it produced

(0.999996032051, 0.999752590918, 1.00051524149, 0.999865614827, 1.00051393702,
1.00081316485, 1.0003013867, 0.999952291627, 1.00317692332, 1.00190909238,
1.00338841435, 1.0028209843, 0.999901136974, 0.999685601802, 1.00023598765,
0.999759535125, 1.00007925703, 0.999828183293, 0.999983625846, 1.00000137095,
1.00127407379, 0.999571818832, 0.998182715454, 1.00287847722, 0.997618065869,
0.985797805312, 1.00128059689, 1.00323110941, 0.999249833203, 1.00353203465,
0.993840165154, 69.7775515638, 78.9209154557, 69.6530563147, 292.573568982,
1.00300017086, 81.6883338729, 0.994294895505, 0.982430720267, 0.993172097894,
442.472266954, 79.1853952418, 472.211668408, 314.369837559, 0.981858227609,
82.2731083351, 0.996948180848, 1.00369287186, 0.999583438497, 82.1266879999,
1.00283964097, 65.1521899031, 0.986039160893, 1.00093969372, 1.00467468262,
1.00038339564, 1.00039471554, 0.996595595441, 0.996060844583, 1.00083898898).

For σ = .005, the interface was barely recoverable:

(1.02210892888, 1.05359431427, 1.03076820911, 1.01848761578, 1.00685408568,
0.931912505035, 0.960180176577, 0.987083804414, 1.01622145417, 1.05276087345,
0.981566122779, 1.12722929317, 1.04018164012, 0.968086474157, 0.996739177521,
0.980067433646, 0.999298218399, 0.97782677978, 0.956886940048, 0.98931899352,
1.20181830088, 1.02399659216, 1.00776942835, 1.17705845386, 0.931143708115,
0.588618661502, 1.0173386639, 1.37838578143, 0.950425956242, 0.867915349463,
0.969197641858, 514.742453957, 10000.0, 78.8113480023, 2248.1400897, 0.969268877007,
1.49011611938e-08, 0.813891264663, 0.834733818306, 1.0994217114, 1.49011611938e-
08, 3.82658480115, 1.49011611938e-08, 1.49011611938e-08, 1.00672447191, 43.6420910734,
0.829305209955, 0.892220575976, 0.952047715186, 10000.0, 1.1534744237, 6.05957695454,

15

1.06522668363, 1.06918761181, 1.21745338104, 0.94376670042, 0.962917249603,
0.667412701551, 0.936751269199, 1.01791481719).

4.2 Numerical Differentiation

The authors of [4] found that it was frequently much quicker to compute deriva-
tives numerically with finite differences rather than evaluate them symbolically.
In their implementation of gradient descent, they used the following approxi-
mation:

∂iF(x) ≈ F(x + hei)− F(x)
h

,

where ei is the standard basis vector in Rn with a 1 in the ith row and zeroes
elsewhere, and h is small. For many purposes, this approximation is sufficiently
stable. However, for h on the order of machine epsilon, the subtraction in
the numerator can cause problems with roundoff error. To get around this,
I took advantage of Sage’s support for complex arithmetic by applying the
approximation

∂iF(x) ≈ Im F(x + ihei)
h

.

A good discussion of this method is given in [2]. To see why this approximation
is valid, we give a single variable theorem.

Theorem 4.1. Suppose f(z) is analytic in a ball |z − x0| < r for x0 ∈ R and
r > 0. Suppose further that f : (x0 − r, x0 + r)→ R. Then

f ′(x0) = lim
h→0

Im f(x0 + ih)
h

.

Proof. Rewrite Im f(x0 + ih) as

f(x0 + ih)− f(x0 + ih)
2i

.

By the Schwarz reflection principle

f(x0 + ih) = f(x0 − ih),

so

Im f(x0 + ih)
h

=
f(x0 + ih)− f(x0 − ih)

2ih
.

Since f is analytic in a neighborhood of x0, it possesses a power series

f(x0 + k) = f(x0) + f ′(x0)(k) +O(k2).

Therefore,

16

lim
h→0

Im f(x0 + ih)
h

= lim
h→0

f(x0 + ih)− f(x0 − ih)
2ih

= lim
h→0

f(x0) + f ′(x0)(ih)− (f(x0) + f ′(x0)(−ih)) +O(h2)
2ih

= lim
h→0

2ihf ′(x0) +O(h2)
2ih

= f ′(x0).

The theorem above becomes messier in full generality, since it deals with several
complex variables. But the approximation is still valid: since the standard
regularization term is a simple polynomial, it is jointly analytic in all of its
variables and real on the real axis. Although this approximation works very
well (taking h = x

√
ε+ ε), it turns out that since S(x) is so simple, it is actually

faster to differentiate it symbolically. On the other hand, since C(x) fails to be
globally differentiable, we must use a numerical subroutine like this.

5 Convexity

Practitioners of optimization love convex functions because we can apply almost
all of our techniques worry-free to them.

Definition 5.1. A function f : S → R is convex if S is a convex set and if for
any x0,x1 ∈ S and for all t ∈ (0, 1):

f(tx0 + (1− t)x1) ≤ tf(x0) + (1− t)f(x1).

If the inequality above is strict, then f is said to be strictly convex on S.

Since we are dealing with smooth rational functions, the following observa-
tion will be helpful.

Lemma 5.2. Consider f ∈ C2(S) for some convex set S. Then f is convex if
and only if Hf (x) is positive semidefinite for all x ∈ S. If Hf is positive definite
for all x ∈ S, then f is strictly convex (the converse does not hold).

Finally, the following theorem tells us why we should care about convexity.

Lemma 5.3. Suppose f is convex on S. If x ∈ S is a local minimizer for f ,
then it is a global minimizer. Further, argmin f(x) forms a convex set. If f is
strictly convex and x is a local minimizer for f , then {x} = argmin f(x).

Therefore, if our functional f is convex, a local minimizer that we obtain through
our iterative methods is a solution to the inverse problem.

17

5.1 Sufficient conditions

Unfortunately, it seems that with regard to the convexity of f , there are more
counterexamples than theorems. Here are a few minor results, for which we
consider x ∈ Rn+.

Lemma 5.4. Suppose that F 2
i is convex for 0 ≤ i ≤ m2− 1. Then f is convex.

Proof. The sum of convex functions is convex, and convexity is unaffected by
positive scalar multiplication.

Lemma 5.5. Suppose f : S ∈ Rn → R and g : f [S] → R are convex and g is
nondecreasing. Then g ◦ f is convex.

Proof. This falls straight out of the definition. From the convexity of f , we have
f(tx0 + (1− t)x1) ≤ tf(x0) + (1− t)f(x1). Therefore

g(f(tx0 + (1− t)x1)) ≤ g(tf(x0) + (1− t)f(x1)) since g is nondecreasing
≤ tg(f(x0)) + (1− t)g(f(x1)) since g is convex.

Theorem 5.6. Suppose we have an electrical network Γ consisting entirely of
boundary nodes. Then Γ admits a convex functional f .

Proof. The response matrix Λ(x) for Γ is just the Kirchhoff matrix. Hence, each
entry is either zero, a negative component −xi or a sum

∑
xi. The components

of F are then zero or of the form −xi − Λ0,i or
∑
xi − Λ0,i. Squaring gives

zero, x2
i + 2Λ0,ixi + Λ2

0,i or (
∑
xi)2 − 2Λ0,i

∑
xi + Λ2

0,i. The middle expression
is the sum of convex functions, so it is convex. The quadratic term in the third
expression is the composition of two convex functions, and y2 is nondecreasing
for y > 0, so this function is convex as well by Lemma 5.5. By Lemma 5.4, f is
convex.

Lemma 5.7. Suppose each Fi is either convex and nonnegative or concave and
nonpositive. Then f is convex.

Proof. If y ≥ 0, then y2 is nondecreasing, so if Fi is convex and nonnegative, F 2
i

is convex by Lemma 5.5. If Fi is concave and nonpositive, then −Fi is convex
and nonnegative, so (−Fi)2 = F 2

i is convex.

5.2 A Counterexample

The counterexample to most of the results that we would like to have is very
simple: the Y (wye) network pictured below.

18

The Kirchhoff matrix for this network is

K(x) =

x0 0 0 −x0

0 x1 0 −x1

0 0 x2 −x2

−x0 −x1 −x2 x0 + x1 + x2

 .

Schur-complementing gives the response matrix

Λ(x) =
1

x0 + x1 + x2

x0x1 + x0x2 −x0x1 −x0x2

−x0x1 x0x1 + x1x2 −x1x2

−x0x2 −x1x2 x0x2 + x1x2

 .

Observe that

∣∣∣∣ xixj
x1 + x2 + x3

∣∣∣∣ ≤ ∣∣∣∣xixjxi

∣∣∣∣
= |xj | → 0 as |x| → 0.

Yet if we fix xk = 1, k 6= i, j and let xi = xj →∞, we have

∣∣∣∣ xixj
x1 + x2 + x3

∣∣∣∣ =
∣∣∣∣ xixj
xi + xj + 1

∣∣∣∣
=
∣∣∣∣ x2

i

2xi + 1

∣∣∣∣
→ xi

2
→∞.

Hence, if any entry of the response matrix is nontrivial, the corresponding Fi is
neither nonpositive nor nonnegative on all of Rn

+. Therefore, the conditions of
Lemma 5.7 are not satisfied and we are more or less stuck.

19

Another important note is that if |x| → ∞, we don’t necessarily have that the
entries of the response matrix Λ(x)ij →∞. For instance, fix x0 = x1 = 1. Then
we have

Λ(x) =
1

2 + x2

1 + x2 −1 −x2

−1 1 + x2 −x2

−x2 −x2 2x2

 .

Letting x2 →∞ gives the response matrix

Λ =

 1 0 −1
0 1 −1
−1 −1 2

 .

This is not unexpected, since the conductivity of an edge heading toward
infinity is analogous to identifying the nodes at the ends of that edge. However,
it does mean that f(x) can be bounded as |x| → ∞, which is not particularly
pleasant when it comes to optimization.

In studying convexity, I came across the following interesting result that may
or may not be helpful in understanding the Hessian of f .

Theorem 5.8. Let A be an n × n symmetric matrix with real entries, and
consider x = (x1, x2, . . . , xn) ∈ Rn. The quadratic form g(x) = xTAx has 2A
as its Hessian.

Proof. By the product rule

∂j(xTAx) = (∂ixT)Ax + xT (∂iA)(x + xTA)∂ix

= eTj Ax + xTAej

=
n∑
i=1

Ajixi +
n∑
i=1

Aijxi

= 2
n∑
i=1

Aijxi.

Therefore, ∂i∂jxTAx = 2Aij .

Corollary 5.9. If A is positive semidefinite, then g(x) = xTAx is convex. If
A is positive definite, g is strictly convex.

6 Closing Remarks

The field of numerical methods as they apply to the inverse problem is ripe with
additional venues to explore. Here are some suggestions I have for future work.

20

1. Can we effectively extend our techniques to solving the inverse problem
with mixed maps instead of response matrices? How about for other
networks, such as random walk networks, heat networks, or Schroedinger
networks?

2. Is it possible to use properties of graphs to determine information about
the behavior of F and f? Are there any nontrivial graphs that admit
convex functionals?

3. Can we solve the inverse problem numerically without ever solving the
forward problem during intermediate stages?

6.1 Acknowledgements

I am most indebeted to Professor Jim Morrow and Ernie Esser for their wealth
of knowledge and ideas related to the problems in this paper. I would also like
to thank Tom Boothby for his expertise in Sage and computational methods,
Chad Klumb for providing some of my niftiest examples and Igor Tolkov for
helping me recover some code I thought was lost in cyberspace.

References

[1] E. Curtis, J. Morrow, Inverse Problems for Electrical Networks, Series on
Applied Mathematics, World Scientific, Singapore, 2000.

[2] W. Squire, G. Trapp, Using Complex Variables to Estimate Derivatives of
Real Valued Functions. SIAM Review, 40(1):110-112, Mar., 1998.

[3] W. Sun, Y. Yuan, Optimization Theory and Methods: Nonlinear Program-
ming, Springer Optimization and Its Applications, Springer, New York,
2006.

[4] G. Tucker, S. Whittle, T. Wang, On Numerical Recovery Methods for the
Inverse Problem, 2006.

21

